Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by ATCTE New Delhi						
CRM08	Rev 1.10	EC	24/05/21			

CONTINUOUS INTERNAL EVALUATION- 1

Dept:EC	Sem / Div:VI	Sub:Digital Communication	S Code:18EC61					
Date:24-05-2021	Time: 9:30-11:00 am	Max Marks: 50	Elective:N					
Note: Answer any 2 full questions, choosing one full question from each part.								

	Q	Questions	Marks	RBT	COs			
F	PART A							
1	a	Define Hilbert Transform. State the properties of it.	8	L2	CO1			
	b	Define power spectral density. Draw the power spectra of Unipolar	7	L3	CO1			
		NRZ and Bipolar RZ format.						
c S'		State and prove the Schwarz Inequality.	10	L2	CO2			
		OR						
2	a	Define the complex envelope of bandpass signals. Obtain the	10	L2	CO1			
_		canonical representation of bandpass signals.						
	b	Write short note on B8ZS and B6ZS.	5	L2	CO1			
	c	Explain the geometric representation of signals. Show that energy of	10	L2	CO2			
		the signal is equal to the squared length of the vector representing it.						
PART B								
3	a	Derive the expression for the complex low pass representation of band	10	L2	CO1			
-	h	Obtain the Hilbert transform of $\mathbf{x}(t) = \sin 2\pi f_0 t$	5	13	CO1			
	c	Explain the Gram-Schmidt orthogonalization procedure	10	L3 L2	$\frac{CO1}{CO2}$			
			10					
		OR			~~~			
4	a	What is line coding? For the binary stream 01101001 sketch the following:	10	L3	COI			
		10110WINg. i) Uninglar NP7 ii) Dolar NP7 iii) Uninglar P7 iv) Dinglar P7						
		v)Snlit phase or Manchester code						
	b	Obtain the Hilbert transform of $x(t) = \cos 2\pi f_{ct}$	5	L3	CO1			
	c	Three signals $S1(t)$ $S2(t)$ and $S3(t)$ are shown in the figure Apply	10	L3	CO2			
		Gram-Schmidt procedure to obtain the orthonormal basis functions.						
		Express the signals $S1(t)$ $S2(t)$ and $S3(t)$ in terms of orthonormal basis						
		functions. Also give the signal constellation diagram.						
		$5_{1}(t)$ $5_{2}(t)$ $5_{3}(t)$						
		3 3 3						
		0 2 4 + 0 2 · 2 4 t						

_